About Me
I was a staff research scientist at DeepMind, working there for six and half years at the intersection of reinforcement learning, natural language understanding, and representation learning. Currently I am the lead of CLAIRE lab at EPFL.
I am interested in building agents that can learn from a feedback signal while able to utilize unlabeled data available in the environment. I am interested in improving our understanding of the existing algorithms, as well as to develop new ones to enable real-world applications with positive social impact. I am in particular fascinated by the scientific applications of machine learning algorithms.
I finished my Ph.D. under the supervision of Yoshua Bengio at MILA.
I defended my thesis "Learning and time: on using memory and curricula for language understanding" in 2018 with Christopher Manning as my external examiner. Currently, the research topics that I am working on include but not limited to reinforcement learning, offline RL, foundational models and representation learning (including self-supervised learning, new architectures, causal representations, and etc.) I have served as an area chair and reviewer to major machine learning conferences such as ICML, NeurIPS, ICLR, and journals like Nature and JMLR. I have published at numerous influential conferences and journals such as Nature, JMLR, NeurIPS, ICML, ICLR, ACL, EMNLP, etc... My work has received the best paper award at Nonconvex Optimization workshop at NeurIPS and an honourable mention for best paper at ICML 2019.
I have co-organized the Science and Engineering of Deep Learning workshops at NeurIPS and ICLR.
Feel free to get in touch with me via an email if you have any inquiries or questions.
Work Experience
DeepMind (2017-)
Research Scientist
MSR (2016)
Part-time researcher
IBM Research (2015-2016)
Research Intern
DeepMind (2014)
Research Intern
Maluuba (2015)
Part-time researcher
Tubitak (2008-2011)
Researcher
MILA (2012-2017)
PhD and Research Assistant
METU (2008-2010)
Developer
Education
2007
B.Sc.
Computer Engineering,
Mathematics and Computer Science
University of Bahcesehir
2011
M.Sc.
Cognitive Sciences,
Middle East Technical University
2018
Ph.D.
Computer Science & AI
University of Montreal-MILA
Recent News
-
Our paper Active Offline Policy Selection is accepted to NeurIPS 2021.
-
I have presented Intro to RL (part 1 slides) and Offline RL lectures (part 2 slides) at DeepLearn 2021 Summer School.
-
We have released DeepMind Lab and Bsuite datasets for Offline RL Under RL Unplugged.
-
Our paper On Instrumental Variable Regression for Deep Offline Policy Evaluation is on arXiv.
-
Our paper Regularized behavior value estimation on a single step policy improvement method is on arXiv.
-
Our paper Addressing Extrapolation Error in Deep Offline Reinforcement Learning got Oral at Offline RL Workshop at NeurIPS 2020.